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Course #412
Analyzing Microarray Data using the mAdb System

September 14-15, 2004  1:00 pm - 4:00pm
madb-support@bimas.cit.nih.gov

• Intended for users of the mAdb system who are
familiar with mAdb basics

• Focus on analysis of multiple array experiments
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Agenda
1. mAdb system overview
2. mAdb dataset overview
3. mAdb analysis tools for dataset

– Class Discovery - clustering, PCA, MDS 
– Class Comparison - statistical analysis 
– Class Prediction - PAM 

Various Hands-on exercises
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1. mAdb system overview
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Upload Data

mAdb Data Workflow
Quality Control Prepare Dataset Analysis/Model Review Annotation

File Format

• GenePix

• MAS5

• GCOS 1.1

• ArraySuite

Project Summary

• Summary Statistics

• Array images

• Graphical Report

Dataset Extraction

• Normalization

• Spot Filtering

Analysis Tools

• Class Discovery

• Class Comparison

• Class Prediction

Annotation Tools

• Feature Report

• Gene Ontology

• BioCarta Pathway

• KEGG Pathway
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2. mAdb dataset overview
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What is a dataset?
• mAdb Dataset

– Collection of data from multiple experiments
– Genes as rows and experiments as columns

Genes

Gene expression level

sample1 sample2 sample3 sample4 sample5 …
1 0.46 0.30 0.80 1.51 0.90 ...
2 -0.10 0.49 0.24 0.06 0.46 ...
3 0.15 0.74 0.04 0.10 0.20 ...
4 -0.45 -1.03 -0.79 -0.56 -0.32 ...
5 -0.06 1.06 1.35 1.09 -1.09 ...

= (normalized) Log( Red signal / Green signal)
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New or Existing Dataset:

1. Create New Dataset
2.   Access Existing Dataset
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Dataset Display Page

• Analysis Tools

• Retrieval and 
Display Options…

• Dataset History
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Dataset Display

• Newly created dataset puts 
all experiments into a single 
group

• Dataset display options 
dynamic 

• Integrated gene 
information
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mAdb Dataset Display
Group label

Sample name

genes
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Dataset Group Assignment

• Array Order Designation/Filtering
• Array Group Assignment/Filtering
• Filter/Group by Array Properties
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Dataset group assignment tools
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Array Order Designation/Filtering

• Order arrays in dataset
• Delete/Add back arrays in 

dataset
• Subsequent analysis will 

be ordered by groups first 
and then ordered within 
each group

• Does not group arrays
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Array Group Assignment/Filtering

• One click per array for 
additional group

• Not convenient for large 
dataset

• Can not order within 
group
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Filter/Group by Array Properties

• Array properties include 
Name and Short Description

• Identify consistent pattern
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Filter/Group by Array Properties

• Convenient for large dataset
• Can not order arrays within group
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Group Assignment 

• Group assignment information is carried into relevant analysis
• Dataset is independent from microarray platforms
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Examples for using group labels

• Additional Filtering per Group
• Correlation Summary Report
• Average Arrays within Groups
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Filter by Group Properties

• Ensures each group has sufficient number of non-missing 
values
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Correlation Summary Report

• Pair wise correlation between 2 samples in dataset
• Individual scatter plot available
• Group pattern for quality control
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Visual Bivariate Data Analysis
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Average Arrays within Group

• Averages using log ratios - though user chooses to 
display linear or log2 values
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Dataset I
Small Round Blue Cell Tumors 

(SRBCTs) 

• Khan et al. Nature Medicine 2001
• 4 tumor classifications
• 63 training samples, 25 testing samples, 2308 genes
• Neural network approach
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Hands-on Session 1

• Lab 1- Lab 4
• Read the questions before starting, then answer 

them in the lab.
• Use web site: http://mAdb-training.cit.nih.gov.  
• Avoid maximizing web browser to full screen.
• Total time: 15 minutes
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3. mAdb dataset analysis tools

– Class Discovery: clustering, PCA, MDS 
– Class Comparison: statistical analysis
– Class Prediction: PAM
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Analysis Overview
Class Discovery
- Unsupervised

• Clustering – Hierarchical, K-means, SOMs
• Principal components Analysis (PCA)
• Multidimensional Scaling (MDS)

Class Comparison
- Supervised

• paired t-tests 
• t-test pooled (equal) variance
• t-test separate (unequal) variance
• Wilcoxon Rank-Sum (Mann Whitney U)
• Wilcoxon Matched-pairs Signed Rank
• One way ANOVA
• Kruskal-Wallis

Class Prediction
- Supervised

Prediction Analysis for Microarrays (PAM)
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Class Discovery Example

• Discover cancer subtypes by gene expression 
profiles

• Identify genes which have different expression 
patterns in different groups

• Tools: PCA, MDS, and Cluster Analysis
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Class Comparisons Example

• Find genes which are differentially expressed 
among cancer groups

• Find genes up/down regulated by drug treatment

• Tools: 
– Two or more group comparison
– Statistics Results filtering
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Class Prediction Example

• Identify an expression profile which correlates 
with survival in certain cancers

• Identify an expression profile which can be used 
to diagnose different types of lymphomas

• Tools: Prediction Analysis for Microarrays (PAM)
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3. mAdb dataset analysis tools

– Class Discovery: clustering, PCA, MDS 
– Class Comparison: statistical analysis
– Class Prediction: PAM



31

Class Discovery

• Dataset with large amount of data
• Dataset not organized
• Visualization with Clustering, PCA, MDS
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Cluster Analysis

• Organize large microarray dataset into 
meaningful structures

• Visualize and extract expression patterns
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What to Cluster?

Genes - identify groups of genes that have 
correlated expression profiles

Samples - put samples into groups with similar 
overall gene expression profiles
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Clustering Methods

• Hierarchical clustering
• Partitional clustering

– K-means
– Self-Organizing Maps (SOM)
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Cluster Example on Genes
Much easier to look at large 
blocks of similarly 
expressed genes

Dendogram helps show how 
‘closely related’ expression 
patterns are

Clustering

A. Cholesterol syn.
B. Cell cycle
C. Immediate-early 

response
D. Signaling
E. Tissue remodeling
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2 Steps
– Pick a distance method 

• Correlation
• Euclidian

– Pick the linkage method
• Average linkage
• Complete linkage
• Single linkage
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Correlation
• Compares shape of expression curves (-1 to 1)
• Can detect inverse relationships (absolute correlation)
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Two Flavors of correlation
• Correlation (centered-classical Pearson)
• Correlation ( un-centered)

– assume the mean of the data is 0, penalize if not
– Measures both similarity of shape and the offset from 0
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Euclidean Distance
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Similarity/Distance Metric Summary

shape
Shape and offset

distance
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Hierarchical Clustering Example
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2 clusters?2 clusters?
3 clusters?3 clusters?

Tree Cutting

4 clusters?4 clusters?

Degrees of
dissimilarity
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Hierarchical Clustering Summary

• Detection of patterns for both genes and samples
• Good visualization with tree graphs

• Dataset size limitations
• No partition in results, require tree cutting
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Partitional clustering : K-means

• Partition data into K clusters, with number K 
supplied by user. 

• Produce cluster membership as results.
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• Divide observations into K clusters.

• Use cluster averages (means) to represent 
clusters

• Maximize the inter-cluster distance 
Minimize intra-cluster distance.

K-means Algorithm
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K-means Algorithm
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K-means Algorithm
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K-means Algorithm
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K-means Algorithm
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mAdb K-means Options

Set number of iteration

Hierarchical clustering
within node

Set number of clusters
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K-means Clustering Example
Save as input to TreeView

Create new subset of genes

Show hierarchical clustering
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Summary

• Fast algorithm
• Partitions features into smaller, manageable 

groups
• mAdb allows hierarchical clustering within each 

K-mean cluster

• Must supply reasonable number of K
• No relationship among partitions
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Self-Organizing Maps (SOM)

• Partitions data into 2 dimensional grid of nodes
• Clusters on the grid have topological relationships

• 2 numbers for the dimension of grid supplied by 
user
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mAdb SOM options

Set number of clusters (X, Y)

Set number of iteration

Hierarchical within SOM clusters

Activate Randomized Partition
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SOM Clustering Example
Save as input to TreeView

Create new subset of genes

Show hierarchical clustering
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SOM Summary

• Neighboring partitions similar to each other
• Partitions features into smaller groups
• mAdb allows hierarchical clustering within each 

SOM cluster

• Results may depend on initial partitions
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Summary of mAdb Clustering Tools

Hierarchical K-means SOM

Relationship 
visualization

Data Size

Performance

Small Large Large

Slow Fast Middle

Cluster Type Gene/Array Gene Gene

Tree 
Structure

partition 
Membership

Partition
2-D topology
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Cluster Analysis

• Normalization is important
• Reduce data points by variance 
• Use K-mean or SOM to partition dataset
• Use biological information to interpret results
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Hands-on Session 2

• Lab 6 - lab 7
• Total time: 15 minutes
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Principal Component Analysis

• How different samples are from each other 
• Project high-dimensional data into lower 

dimensions, which captures most of the 
variance

• Display data in 2D or 3D plot to reveal the 
data pattern
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Principal Component Analysis

• Hypothesis - there exist unobservable or 
“hidden” variables (complex traits) which 
have given rise to the correlation among the 
observed objects (genes or microarrays or 
patients)

• The Principal Components (PC) Model is a 
straightforward model  that seeks to achieve 
this objective
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PCA 3D plot

• Axes represent the first 3 
components 

• The first 3 components 
should explain most of the 
variance

• Formation of clusters
• Relationship of clusters.
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Basic Idea of PCA is a Data Reduction Method Based on  
Analysis of Correlation Pattern(s) That Can Be Exist Among the  
Observed Random Variables (i.e.  Expression values of Genes).

Array 1 2 … m
Gene 1 …
Gene 2 …
Gene  ...
Gene n …

11a 12a ma1

21a 22a ma2

M M M M

1na 2na nma

n is the number of genes (gene probes); m is the number of arrays (experiments)

Raw Data

A Structure of Correlation Matrix is the Major Object for PCA
Correlation 
Matrix

Gene 1 Gene 2 … Gene n

Gene 1 …
Gene 2 …
Gene  ...
Gene n …

1 12r nr1
21r 1 nr2

M M M M

1nr 2nr 1

A correlation matrix is a symmetric matrix of correlation coefficients 
(                          and                                 )11 ≤≤− ijr 1;,...,2,1,; === iijiij rnjirr
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The Results of PCA are a small set of the orthogonal (independent)
Variables  Grouping of the Variables 

From a purely mathematical viewpoint the purpose of PCA is to transform n
correlated random variables to an orthogonal set which reproduces the original 
variance/covariance structure.
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(The First) Principal Component y1 can “explain” the major fraction 
(~90%) of a dispersion of variables x1 and x2 for all of the 10 observed 
objects.
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The Example of a PC Model
Correlation 
Matrix

Gene 1 Gene 2 Gene 3 Gene 4

Gene 1 0.01 0.95 0.02
Gene 2 0.01 0.03 0.45
Gene  3 0.95 0.03 1 -0.03
Gene 4 0.02 0.45 -0.03 -0.03

1
1

y
2

4242222

3131111

xbxby
xbxby

+≈
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Gene 1

Gene 4Gene 2 Gene 3
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Sample:Small Round Blue Cell 
Tumors 

(SRBCTs) 
• 63 Arrays representing 4 groups 

– BL (Burkitt Lymphoma, n1=8) 
– EWS (Ewing, n2=23)
– NB (neuroblastoma, n3=12)
– RMS (rhabdomyosarcoma, n4=20)

• There are  2308 features (distinct gene probes) 
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PCA Detailed Plot

• ”Scree” plot
• 2-D plots
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PCA 2-D plots

• First 2 components separate 3  
groups well
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Result of the PCA :
Comp1 Comp2 UniGene Description

0.00934 0.000195 Hs.119571 collagen type III alpha 1=Ehlers-Danlos syndrome type IV autosomal dominant=COL3A1

0.008788 2.36E-05 Hs.78935 methionyl aminopeptidase 2

0.008736 5.49E-05 Hs.83164 collagen, type XV, alpha 1

0.008063 5.30E-05 Hs.180324 Human insulin-like growth factor binding protein 5 (IGFBP5) mRNA

0.007908 0.000521 Hs.251664 Homo sapiens cDNA: FLJ22066 fis, clone HEP10611

0.007408 0.000288 Hs.349109 Insulin-like growth factor 2 (somatomedin A)

0.006517 0.000498 Hs.78846 heat shock 27kDa protein 2

0.005894 0.000107 Hs.374415 ESTs

0.005651 9.83E-06 Hs.290070 gelsolin (amyloidosis, Finnish type)

0.005402 0.0001 Hs.15463 Homo sapiens, clone IMAGE:2959994, mRNA

0.005047 0.000121 Hs.84520 Yes-associated protein 1, 65kDa

0.005012 0.000389 Hs.151242 serine (or cysteine) proteinase inhibitor, clade G (C1 inhibitor), member 1, (angioedema, hereditary

Comp1 Comp2 UniGene Description

3.96E-05 0.01071 Hs.73853 bone morphogenetic protein 2

6.47E-05 0.010634 Hs.89709 glutamate-cysteine ligase, modifier subunit

4.63E-05 0.008607 Hs.239760 citrate synthase

9.14E-05 0.008508 Hs.31053 cytoskeleton-associated protein 1

0.000428 0.008408 Hs.174195 interferon induced transmembrane protein 2 (1-8D)

0.00038 0.008193 Hs.159637 valyl-tRNA synthetase 2

8.30E-05 0.007452 Hs.79876 steroid sulfatase (microsomal), arylsulfatase C, isozyme S

1.20E-05 0.007 Hs.43509 ataxin 2 related protein

0.003848 0.006756 Hs.303627 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa)

1.30E-05 0.00652 Hs.106876 ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d isoform 1

7.68E-06 0.006387 Hs.290791 ESTs

0.002802 0.006052 Hs.289271 cytochrome c-1



70

MDS overview 

• An alternative for PCA 
• Non-linear projection methodology
• Tolerates missing values
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Summary of PCA and MDS

• Dimension reduction tools
• Graphic representation to help explain 

patterns
• Quality control for experimental variance
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Hands-on Session 3

• Lab 5
• Total time: 15 minutes

• Next class tomorrow at 1:00 pm
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Agenda
1. mAdb system overview
2. mAdb dataset overview
3. mAdb analysis tools for dataset

– Class Discovery – clustering, PCA, MDS
– Class Comparison-statistical analysis
– Class Prediction –PAM
Various Hands-on exercises
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Class Comparison

• Overview – Statistical distributions and statistical 
tests

• Statistical Distributions of Gene expression and 
Microarray Data Analysis

• Hypothesis tests for two or more groups 
– Errors: Type 1 and Type 2

• mAdb analysis tools – Statistical tests 
– T-test
– ANOVA
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Sources of errors and uncertainty 
in microarray data analysis

Poorly-controlled external factors (quality of tissue sample, 
RNA etc.)

Mixture of biological samples derived from many cells and/or 
complex tissues 

Biological noise (stochastic mechanisms of gene expression)

Technical Noise  of background signals 

Inter-array and across- array normalizations.

Limited number of replicates (cost, personnel, etc. constraints)

Inadequate statistical methods 
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Class Comparison

Goal: To introduce users to some basic statistical 
tests and data mining tools in mAdb to identify 
differentially expressed genes
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Gene Expression Levels

The gene’s expression level is defined as the average number of 
mRNA molecules per cell.

A complete list of  mRNAs of a given cell type 
is called the transcriptome . Observed list of mRNAs in the 
RNA sample is called the representative transcriptome of a 
cell population.
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Differentially Expressed Genes

The goal of testing for differentially expressed genes is 
the identifying a complete list of genes having 
expression levels statistically and (more important) 
biologically different in two or more sets of the 
representative transcriptomes.
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A frequency concept of probability

Let n(A) be the number of occurrences of event A in the N repetitions of 
the same experiment. 
The frequency concept states that the ratio n(A)/N approximates the 
probability P(A) of even A with accuracy of the approximation increasing 
as N increases.Thus, the probability of an event A is  additively countable, 
non-negative value in the closed interval [0,1]. 

An estimate of P(A)= (number of occurrences of A)/Total number of 
occurrences

To present the probabilities of all possible events of the experiment, we can 
construct the histogram (the empirical frequency distribution) 
which  approximates the probability function of a random variable 
associated with these events.   
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Replicated measurements and the 
Frequency Distribution Function
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Testing the hypothetical frequency distributions of 
the  expression level for a gene in  two populations

Before treatment After treatment

d
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;;

;;:
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σσµµ
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σσµµ

≠≠
≠=

=≠H
2121 ;: σσµµ ==oHNull hypothesis

Alternative hypotheses
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Spread (variability) of measurements

low
variability Differentially expressed gene

high
variability

medium
variability Differentially expressed gene.

A low-reliable estimate

Differentially expressed 
gene. Powerful and exact 
statistical tests must be used
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 Frequency distributions ( for small samples)

Expression level (#transcripts/cell)
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Gene Expression Profile

• Gene expression data sets have very broad ranges of the 
number of transcripts for different genes (from 0.1 to 
20000 transcripts per human cell on average).

• The list of the mRNA transcripts found in the 
representative transcriptome, together with each gene’s 
expression level is called the gene expression profile.
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Statistical Distribution of Gene 
Expression Levels

• The statistics of expressed genes can be specified by the number 
(and/or proportion) of expressed genes that have one, two, etc.
transcripts present in an associated mRNA sample.

• A normalized histogram of gene expression levels can be considered
as  the empirical frequency distribution of the numbers of  expressed 
genes 



87

Normalized Signal Intensity (#transcripts per cell)
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Determination of  the working  domain for signal intensity levels in which 
differentially expressed genes might be found. By our estimates ~ 40% (2000 genes) 
of  the 5000 apparently expressed  yeast genes are expressed at less than 0.5 copy per 
cell on average. 

Typical skewed frequency distribution of the gene expression levels in the 
eukaryotic transcriptome (Kuznetsov, VA. et al.,  Genetics, 161, 1321-
1332, 2002)
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Frequency Distribution of Gene 
Expression: Observations

A frequency distribution of the gene expression levels 
in the transcriptomes has  skewed shape with a very 
long right tail.

Statistical analysis implies that most of the expressed 
genes in eukaryotic cells have few transcripts per cell
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Technical Caveats

• Technical variability (noise) has a significant 
intensity bias  toward low signal intensity values

• Simple, static fold change thresholds are too 
stringent at high intensities and not stringent 
enough at low intensities.
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Statistical and biological problems 
with fold change of means:

• Genes with high fold change may exhibit high 
variability among cell types  due to natural 
biological variability for these genes

• Genes with small fold changes may be highly 
reproducible and should be biologically essential 
genes

Conclusion:
Robust Statistical Tests of microarray data are 
necessary to use and an additional Biological 
validation(s) of the statistical analysis should be needed
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Hypothesis tests  for two or 
more groups
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H0: Q1=The probability of an error of 
type I (false-positive)
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of type II (false-negative)
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0 Xx ∈ 1

0 Xx ∉
If xo belongs X1, then deciding that xo

not belongs X1 is the error of type I. 

If xo belongs X2, then deciding that xo

not belongs X2 is the error of type II.

Two types of Errors
If H0 is true If H1 is true

Q2
Q1

X1= data set  for control population; 
X2 = data sets for tested population.
Let x0 be the critical (the rejection) 
value of  x. Let xo be the observed 
value of  x.

Any modifications of x0 has the opposite effects on probabilities of errors of Type I and 
Type II: if Q1 is pushed down, then Q2 is  raised. However, an increase of sample size 
decreases of both types of errors.

False-positive False-negative
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The Decision:
Relation Between Type I and Type II Errors

Accept Ho Reject Ho

Correct decision
Probability=1-Q1

Type 1 error
Probability=Q1

Type II error
Probability= Q2

Correct decision
Probability=1-Q2

(power)

Ho is true

Ho is false

The p-value is the smallest probability (significance value) at which
the Null Hypothesis , Ho, would be rejected by a test for a given data 
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The t-test assesses whether the means
of two groups are statistically different
The null hypothesis is 

0: 21 =− µµoH

Calculating t-test

low
variability
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signal
noise

Compare the means of two groups

low
variability
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low
variability

signal
noise

difference between group means
=

Compare the means of two groups
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low
variability

signal
noise

difference between group means
variability of groups=

Compare the means of two groups
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Compare the means of two groups

signal
noise

difference between group means
variability of groups=

XT - XC

SE(XT - XC)=
_ _

_ _

low
variability



signal
noise

difference between group means
variability of groups=

XT - XC

SE(XT - XC)=
_ _

_ _

Compare the means of two groups

= t-value

low
variability

99
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Calculating p-value (t-test)
• The p-value is the probability to reject the null hypothesis 
(                                ) when it is true (e.g. p=0.0001)
• When carrying out a t-test, a p-value can be calculated 

based on the t-value and the sample sizes n1 and n2.

0: 21 =− µµoH

d

Large distance d, low
variability,
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mAdb t-test
• 2 group statistic analysis automatically selected 

for a 2 group dataset
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t-test Results
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Statistic Results Filtering

statistical significance, p-value

log2(x1))- log2(x2)
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Other Statistical Tests for 
Univariate Analysis 

Parametric

Non-Parametric (distribution free)
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Analysis of the k independent groups (k>=2)

Group 1 Group 2 … Group k

X 1,1 X 2,1 … X k,1

X 1,2 X 2,2 … X k,2

… … … …

X 1,n1 X 2,n2 … X k,nk

Ho: All of the populations are identical; 
H1: Some of populations tend to display differ observed 
values than other populations
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Multiple Group Comparison for 
each gene

• Analysis Of Variance (ANOVA): parametric test based on F-statistics
• Kruskal-Wallis : non-parametric rank-based test
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Analysis of Variances 
(ANOVA)

This  parametric method can be 
applied to compare several 
population means

koH µµµ === ...: 21
vs.

;:1 jiH µµ ≠ kji ≤≠≤1for some 
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ANOVA Results and Filtering

Group pair for Max Mean Difference

Maximum Difference between Group Means
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Multiple Testing of 
Significance

• Statistical problem: Finding the differentially 
expressed genes measured simultaneously in the 
two or more groups of microarrays is the  multiple 
test of significance problem, where many null 
hypotheses are tested simultaneously.
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Procedures for Multiple Testing 
of Significance

• The Bonferroni correction:  If there are m null-hypotheses 
(tests), test each of these hypotheses to that level            . 
(very conservative: it dramatically increases the false-
negative rate!)

ma /

aLet        denote a pre-specified probability to reject the null-
hypothesis for a given covariate. Let m gene tags measured 
simultaneously on a replicated microarray experiments

• If  m covariates are grouped in j families, than only j
hypotheses should be tested at  a significance level should 
be bigger~ mja /



111

Hands-on Session 4

• Lab 9
• Total time: 15 minutes
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3. mAdb dataset analysis tools

– Class Discovery: clustering, PCA, MDS
– Class Comparison: statistical analysis
– Class Prediction: PAM
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Prediction Analysis for Microarrays (PAM): 
Class Prediction

Supervised Model for Two or More Classes

• http://www-stat.stanford.edu/~tibs/PAM
• Provides a list of significant genes whose 

expression characterizes each class 
• Estimates prediction error via cross-validation
• Imputes missing values in dataset
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Design of the PAM algorithm

Data Table

Choose Features

Cross-validation
Test errors

Evaluation of 
Classifier

Discriminant function

Training set
Test set

Final subset
of variables

Best model and 
subset of parameters
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Calculating the Discriminant Function

For each gene, a centroid (a sample mean) is calculated 
for each given class.

Briefly, the method computes a standardized centroid
for each gene in each class. This is the average gene 
expression value in its class minus the overall gene 
expression average  value divided by the  standard 
deviation-like normalization factor for that gene. 
centroid distance= (class avg – overall avg) / 
normalization factor.
Creates a normalized average gene expression profile 
for each class
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Class Centroids
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Classifying an Unknown Sample

A classifier takes the gene expression profile of a new 
sample (microarray) from test sets, and compares it to 
each of these class centroids. The class whose centroid
that it is closest to, in squared distance, is the predicted 
class for that new sample.

. 
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K-fold Cross Validation
•The samples are divided up at random into K 
roughly equally sized parts.

Entire Data Set

50 Group A

25 Group B

25 Group C

2 3
10 Group A

5 Group B

5 Group C

1 4 5
10 Group A

5 Group B

5 Group C

10 Group A

5 Group B

5 Group C

10 Group A

5 Group B

5 Group C

10 Group A

5 Group B

5 Group C
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K-fold Cross Validation
For each part in turn, the classifier is built on the other 

K-1 parts then tested on the remaining part. 

TRAIN

1 2

TRAIN

3

TRAIN

4

TEST

5

TRAIN
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K-fold Cross Validation 

TEST

4

TRAIN

1

TRAIN

2 3 5

TRAIN TRAIN

TRAIN

1 4

TRAIN

5

TEST

32

TRAIN TRAIN

etc….
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Estimating Error Rate

PAM estimates a predicted error rate by averaging the 
error rate for each K cross validation



122

Reducing the feature set
Nearest shrunken centroid classification makes one 
important modification to standard nearest centroid 
classification. It "shrinks" each of the class centroids 
toward the overall centroid for all classes by an 
amount we call the threshold . This shrinkage consists 
of moving the centroid towards zero by threshold, 
setting it equal to zero if it hits zero. 

After shrinking the centroids, the new sample is 
classified by the usual nearest centroid rule, but using 
the shrunken class centroids. 
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Shrinking the centroid
For example if threshold was 2.0, a centroid of 3.2 
would be shrunk to 1.2, a centroid of -3.4 would 
be shrunk to -1.4, and a centroid of 1.2 would be 

shrunk to zero

Original centroid Shrunken centroid

3.2 1.2Gene 1

Gene 2 -3.4 -1.4

Gene 3 1.2 0
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Reduce Gene Number

Group BGroup A
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Incremental of threshold

Group A Group B
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Prediction Model for SRBCT

• Compare model with new tumor tissues to make diagnosis
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Multiple models with incremental 
threshold (   )

Group A Group B
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Misclassification Error

• Misclassification Error is calculated by averaging 
the errors from each of the cross validations.

• The model with lowest Misclassification Error is 
preferred.
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Sample

• 63 Arrays representing 4 groups 
– BL (Burkitt Lymphoma, n1=8) 
– EWS (Ewing, n2=23)
– NB (neuroblastoma, n3=12)
– RMS (rhabdomyosarcoma, n4=20)

• There are  2308 features (distinct gene probes) 
• No missing values in array data sets
• Each group has an aggregate expression profile
• An unknown can be compared to each tumor class 
profile to predict which class it most likely belong
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PAM Results

Link leads to the dataset 
with PAM model

Create new model by fill 
in a new Delta value

Misclassification error
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mAdb PAM Model

=
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PAM summary

• It generates models ( classifiers) from microarray
data with phenotype information

• It does automatic gene selection for each models. 
• Misclassification errors are calculated with the 

data for model selection.
• Require adequate numbers of samples in each 

group
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Hands-on Session 5

• Lab 10, Lab 11 (optional)
• Total time: 15 minutes
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mAdb Development and Support Team:
• John Powell, Chief, BIMAS, CIT
• Liming Yang, Ph.D
• Jim Tomlin
• Xiaopeng Bian, Ph.D.**

• Esther Asaki*
• John Greene, Ph.D.*
• Vladimir Kuznetsov, Ph.D., 
Sci.D.*
• Kathleen Meyer*
• Tim Ruppert*

*SRA International contractor
** Postdoctoral Fellow
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http://madb.nci.nih.gov
http://madb.niaid.nih.gov

For assistance, remember: 

madb_support@bimas.cit.nih.gov
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Determination of principal components is 
based on computing of  eigen values  and 

eigenvectors
λ be  an eigen value of matrix RLet n=2, and

121 1 r+=λ 11
2 )( λσ =y

122 1 r−=λ 22
2 )( λσ =y

n==+ 221 λλ

9.012 =r
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